
Applying the DOM Object model to structured binary file formats

The Document Object Model (DOM) is a general API for accessing SGML and XML documents that
was developped by the W3 Consortium.

The DOM API works on a tree composed of nodes, where the entire file is parsed and a hierarchy of the
elements are created as a tree representation.

There is no reason why a subset of this API could not be made available for binary structured file
formats. The core API, using the Node interface is ideal for representing such structured file formats as
RIFF, IFF, OLE, TIFF and JPEG files.

This document describes the changes that have to be made to the Core and XPath DOM specifications
so they can be used with binary structured file formats. It assumes that no specific XML/HTML
interface is used.

DOM Core specification changes

DOM Basic types

DOM Basic types Availability
DOMString x
DOMTimeStamp x
DOMUserData x
DOMObject x

DOM Interfaces
Only a subset of the fundamental interfaces are available in this recommendation. None of the extended
interfaces are available (it would make no sense to have an XML/SGML interface for binary files).

DOM Core interface Availability
DOMException x
DOMStringList N/A
NameList N/A
DOMImplementationList N/A
DOMImplementationSource N/A
DOMImplementation N/A
DocumentFragment N/A
Document Partial

DOM Core interface Availability
Node x
NodeList x
NamedNodeMap ???
CharacterData N/A
Attr N/A
Element N/A
Text N/A
Comment N/A
TypeInfo N/A
UserDataHandler N/A
DOMError N/A
DOMErrorHandler N/A
DOMLocator N/A
DOMConfiguration N/A

DOM XPath Changes
The only types of nodes that are supported in XPath are the Element nodes and the Text nodes. The
other nodes are not supported for evident reasons.

DOM XPath interface Availability
XPathException x
XPathEvaluator Partial
XPathExpression N/A
XPathNSResolver N/A
XPathResult Partial
XPathNamespace N/A

Because the file types are binary, the Node.nodeValue type must be changed to represent binary data.
Therefore in this model, instead of being considered an array of unicode characters (of type
DOMString), it is considered an array of bytes.

The Node.nodeName is still represented as a DOMString.

Node type support

Node type Comment
ATTRIBUTE_NODE This can never occur in a structured binary file

format.
CDATA_SECTION_NODE This can never occur in a structured binary file

format.
COMMENT_NODE This can never occur in a structured binary file

format.
DOCUMENT_FRAGMENT_NODE Currently unsupported.
DOCUMENT_NODE Always present, actually is the root node.
DOCUMENT_TYPE_NODE Always present, actually gives the type of the file

format, it is not related at all to the DTD or
DOCTYPE.

ELEMENT_NODE Usually present, see below for more information
on how this value is interpreted.

ENTITY_NODE This can never occur in a structured binary file
format.

ENTITY_REFERENCE_NODE This can never occur in a structured binary file
format.

NOTATION_NODE This can never occur in a structured binary file
format, since DTD's cannot be included in the
actual file.

PROCESSING_INSTRUCTION_NODE This can never occur in a structured binary file
format.

TEXT_NODE In this recommendation, this node represents the
actual binary data of a leaf node. As stated earlier,
the Node.nodeValue attribute is a an array of bytes
instead of being an array of unicode characters.

ELEMENT_NODE Explanations

Most structured binary file types are either based on a directory approach, or on chunk based approach.

directory based file types

This type of file is based on one or more directory tables, where each directory tables contains one or
more directory entries.

A directory entry specifies where the actual data for a type of information is located, This is the scheme
used in both TIFF files and OLE (Microsoft Word) files.

TIFF files
In TIFF files, each directory entry has a numeric id value which givesinformation on the type of entry.
Each of these id values can be considered an ELEMENT_NODE with nodeName be equal to either
equal to the mnemonic name (as specified in the TIFF specification) or directly as the identifier number
(converted to a DOMString). Node.nodeValue would always be equal to null.The leaf node of the
ELEMENT_NODE would always be a TEXT_NODE that contains the data associated with this
directory entry.

OLE files
OLE documents are represented directly as a file system where each storage element (directory) is
represented as an ELEMENT_NODE that can contain other ELEMENT_NODE nodes if it contains
other directories or files. It is a leaf node, if there are no children in the directory. The nodeName is the
actual name of the directory.

Files are also ELEMENT_NODE nodes, where their child is the data of the file, represented as a
TEXT_NODE. Node.noddeName contains the name of the file.

Chunk based file types

This kind of structured file is composed of data chunks, each of them being precedeed by a header
giving the chunk type and size, followed by the actual data, this is the approach used in JPEG, RIFF,
IFF and PNG file.

In the case of IFF, RIFF and PNG files, the Node.nodeName will be equal to the four character
signature chunk name. Usually (when this is not a chunk that indicates nesting), the child node of this
element node shall be a TEXT_NODE with the actual data for this chunk For JPEG files, the
Node.nodeName value shall be equal to the 3 character mnemonic for the markers.

	Applying the DOM Object model to structured binary file formats
	DOM Core specification changes
	DOM Basic types
	DOM Interfaces

	DOM XPath Changes
	Node type support
	ELEMENT_NODE Explanations
	directory based file types
	TIFF files
	OLE files

	Chunk based file types

